Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We show scalar-mean curvature rigidity of warped products of round spheres of dimension at least 2 over compact intervals equipped with strictly log-concave warping functions. This generalizes earlier results of Cecchini-Zeidler to all dimensions. Moreover, we show scalar curvature rigidity of round spheres of dimension at least 3 with two antipodal points removed. This resolves a problem in Gromov's ''Four Lectures'' in all dimensions. Our arguments are based on spin geometry.more » « less
-
Abstract The Theorem of Bonnet–Myers implies that manifolds with topology do not admit a metric of positive Ricci curvature, while the resolution of Geroch's conjecture implies that the torus does not admit a metric of positive scalar curvature. In this work we introduce a new notion of curvature interpolating between Ricci and scalar curvature (so‐calledm‐intermediate curvature), and use stable weighted slicings to show that for and the manifolds do not admit a metric of positivem‐intermediate curvature.more » « less
An official website of the United States government
